Towards High Resolution MS in Regulated Bioanalysis

Benno Ingelse
MSD

3rd EBF focus meeting
June 12th 13th – Brussels, Belgium
Contributors

- Gary Adamson
- Ken Anderson
- Kevin Bateman
- Cynthia Chavez-Eng
- Inhou Chu
- Raj Desai
- Bart Emary
- Jason Hoar
- Mike Holkenborg
- Benno Ingelse
- Harrie Peters
- Enzo Pucci
- Amy Wang
- Yang Xu
- Bella Yao
- Sean Yu
- Rena Zhang
Outline

• Quads vs HRMS
• HRMS: Quantitative applicability
• Quan – Qual workflows
• Future considerations
Triple Quadrupole Mass Spectrometry

- Selective
 - Based on two stages of mass selection, parent m/z and fragment ion m/z
- Sensitive
 - Beam instrument with high duty cycle
- Robust
 - Calibration stable over long period
- Compact Data Sets
 - MRM data files are very small and easy to process
- 25+ years of constant development for quantitative applications
High Resolution Mass Spectrometry

- Selective?
 - Based on resolving power
- Sensitive?
 - Pulsed (TOF) or Indirect Detection (FT traps) based instruments
- Robust?
 - Calibration stable over long period (using internal calibration protocols)
- Large Data Sets
 - Full scan data files are large and time consuming to process
- ~3-5 years of recent development for quantitative applications
Selectivity: SRM Based Quantitation

Haloperidol
1 nM in plasma
Why Mass Accuracy and Stability Matters: Narrow Window XIC from Rat Plasma t=15 min
Full Scan Based Quantitation

Standard, 6 compound Mix, 0.001

24feb2010_PKTest_010

1: TOF MS ES+
376.146 0.00Da
1.01e3

Haloperidol
1 nM in plasma
XIC 3 mDa window
Synapt G2

Standard, 6 compound Mix, 0.001

24feb2010_PKTest_010 149 (1.416)

1: TOF MS ES+
371.1472
4.56e4

Haloperidol
1 nM in plasma
XIC 3 mDa window
Synapt G2
Plasma is a Dirty Matrix

Standard, 6 compound Mix, 0.001
24feb2010_PKTest_010 150 (1.425)

1: TOF MS ES+
3.99e4

-1.9 ppm
Why Resolution Matters:
Rat Plasma t=15 min

Experimental Data

At a resolution <20,000 FWHM the compound will be over quantified due to un-resolved contaminants.

Both improved mass resolution and chromatographic resolution are needed for accurate quantification.
Outline

- Quads vs HRMS
- HRMS: Quantitative applicability
- Quan – Qual workflows
- Future considerations
Challenges in Analytical Workflows

1. Perform Quantitative analysis.
2. Increase Method Selectivity.
3. Reduce Method development time.
4. Increase laboratory throughput.

Resolving Challenges in Regulated Bioanalysis

Single Reaction Monitoring

(New Generation Triple Quads)

High Resolution Mass Spectrometer

(New Generation of High Resolution detector)
Challenges in Analytical Workflows

1. Quantitative analysis:
 - Able to reach level of sensitivity given by the SRM.
 - Good Linearity.

2. Method selectivity:
 - Can resolve chromatographic interference.
 - Decrease baseline noise (↑ signal to noise).

3. Method development:
 - Reduce method development working days.
 - Methods (extraction and chromatographic) simplified.

4. Laboratory throughput:
 - Decrease total injection runtime.
 - Decrease total extraction time.
Small Molecule - MK-A

- Clinical method- monoisotope 821, Human plasma, Isocratic, 2x50 mm UPLC, L/L cleanup

<table>
<thead>
<tr>
<th>Expected Conc. (ng/mL)</th>
<th>No. Of Values Used</th>
<th>API 4000</th>
<th>API 5000</th>
<th>AB 5500</th>
<th>AB 5600<sup>a</sup></th>
<th>AB 5600<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>% C.V.</td>
<td>% Accuracy</td>
<td>% C.V.</td>
<td>% Accuracy</td>
<td>% C.V.</td>
</tr>
<tr>
<td>1</td>
<td>6 of 6</td>
<td>6.0</td>
<td>102</td>
<td>8.7</td>
<td>100</td>
<td>4.2</td>
</tr>
<tr>
<td>2.5</td>
<td>6 of 6</td>
<td>2.1</td>
<td>96</td>
<td>3.0</td>
<td>99</td>
<td>2.1</td>
</tr>
<tr>
<td>5</td>
<td>6 of 6</td>
<td>2.1</td>
<td>97</td>
<td>2.8</td>
<td>102</td>
<td>1.1</td>
</tr>
<tr>
<td>10</td>
<td>6 of 6</td>
<td>1.9</td>
<td>99</td>
<td>1.6</td>
<td>101</td>
<td>2.2</td>
</tr>
<tr>
<td>100</td>
<td>6 of 6</td>
<td>1.7</td>
<td>100</td>
<td>0.8</td>
<td>103</td>
<td>1.2</td>
</tr>
<tr>
<td>500</td>
<td>6 of 6</td>
<td>1.3</td>
<td>103</td>
<td>0.9</td>
<td>102</td>
<td>0.6</td>
</tr>
<tr>
<td>1000</td>
<td>6 of 6</td>
<td>1.4</td>
<td>101</td>
<td>0.8</td>
<td>99</td>
<td>0.7</td>
</tr>
<tr>
<td>1750</td>
<td>6 of 6</td>
<td>1.4</td>
<td>100</td>
<td>1.2</td>
<td>98</td>
<td>1.9</td>
</tr>
<tr>
<td>2000</td>
<td>6 of 6</td>
<td>1.7</td>
<td>100</td>
<td>0.7</td>
<td>97</td>
<td>1.4</td>
</tr>
<tr>
<td>Range of Values</td>
<td></td>
<td>1.3-6.0</td>
<td>96-103</td>
<td>0.7-8.7</td>
<td>97-102</td>
<td>0.6-4.2</td>
</tr>
</tbody>
</table>

^a - AB 5600 TOF quant with 40 mDa width
^b - AB 5600 MRM quant with 40 mDa width
Small Molecule - MK-A

Sensitivity of Detection:

<table>
<thead>
<tr>
<th>MS</th>
<th>Vol (uL) Injection</th>
<th>Intensity at LLOQ</th>
<th>Average Noise</th>
<th>S/N</th>
<th>Intensity at ULOQ</th>
<th>Range of IS Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>API 4000</td>
<td>8</td>
<td>600</td>
<td>20</td>
<td>30</td>
<td>8.0 x 10^5</td>
<td>3.8x10^4 - 4.8x10^4</td>
</tr>
<tr>
<td>API 5000</td>
<td>2</td>
<td>850</td>
<td>30</td>
<td>28</td>
<td>7.5 x 10^5</td>
<td>7.5x10^4 - 1.2x10^5</td>
</tr>
<tr>
<td>AB 5500</td>
<td>2</td>
<td>1250</td>
<td>50</td>
<td>25</td>
<td>2.3 x 10^5</td>
<td>1.3x10^5 - 1.6x10^5</td>
</tr>
<tr>
<td>AB 5600^a</td>
<td>8</td>
<td>450</td>
<td>100</td>
<td>5</td>
<td>8.0 x 10^5</td>
<td>5.0x10^4 - 7.0x10^4</td>
</tr>
<tr>
<td>AB 5600^b</td>
<td>8</td>
<td>42</td>
<td>4</td>
<td>11</td>
<td>7.0 x 10^3</td>
<td>2.0x10^4 - 3.0x10^4</td>
</tr>
</tbody>
</table>

^a - AB 5600 TOF quant with 40 mdalton width

^b - AB 5600 MRM quant with 40 mdalton width
Progesterone Quantitation (2.5 nM)
API 4000 vs Xevo G1
Outline

- Quads vs HRMS
- HRMS: Quantitative applicability
- Quan – Qual workflows
- Future considerations
Correlation of Data (30 cpds) from Qtof and QqQ

± 20% range

% Parent remaining (data from Xevo)

% Parent remaining (data from API)
Guiding LO

Extensive O-demethylation dramatically increased clearance

Chemistry optimisation

Extension side-chain minimizes O-demethylation
Guiding LO

Monitoring undesired dealkylation

![Graph showing the concentration over time for ER-ant and ER-ago](image-url)
In vivo Metabolites (4 hr rat plasma time point)

Parent

M1

M2

M3

M4
Metabolite Profiles in Plasma

![Graph showing metabolite profiles in plasma over time with peak area ratios for L-873,724, M1, M2, M3, and M4.](image-url)
Multiplexed Analysis

Drug Measurements

Biomarker Measurements

Metabolite Identification
Outline

- Quads vs HRMS
- HRMS: Quantitative applicability
- Quan – Qual workflows
- Future considerations
Future Drug Development Workflows

- When compared to a SRM, will HRMS instruments:
 - Resolve chromatographic problems?
 - Can have improved selectivity with HRMS, but will not fix "ionization" issues
 - Perform bioanalytical assays?
 - Yes
 - Simplify method development time?
 - Yes
 - Be robust and reliable?
 - Yes
 - Generate manageable data files?
 - ?, yet to be done – significant hurdle
 - Enable data processing throughput?
 - ?, need suitable software
Future Challenges

• HRMS hardware is ready for routine assay support
 – Sensitivity, Linearity, Selectivity are acceptable and improving

• Software continues to lag hardware
 – How to handle large datasets?
 – Validate data processing steps?
 – Centroid vs. Profile data?
 – Data reduction acceptable or not?

• Cost vs. Benefit of ownership
 – QQQ’s are a commodity with large user base
 – HRMS are more complex with fewer users
 – Future developments in hardware and software will narrow the gap between QQQ and HRMS
Ion Mobility with HRMS

- Waters G2-S using Ion Mobility
 - Additional level of selectivity beyond mass resolving power by using ion mobility
 - Early data looks promising, but much more work is needed
 - Data file size and data processing software will need to be addressed
Tamoxifen
20mDa XIC, MS Only, IMS OFF

0.25 ng/mL

0.5 ng/mL

1 ng/mL
Tamoxifen 20mDa XIC, IMS full scan DT 1-200 (no filter)

0.25 ng/mL

0.5 ng/mL

1 ng/mL
Tamoxifen
20mDa XIC + 92-102 DT filter

0.25 ng/mL

0.5 ng/mL

1 ng/mL
What if…

• HRMS was developed instead of QQQ technology?
 – Full scan based data acquisition with sensitivity and selectivity equal to today’s modern QQQ with fast data processing used routinely in today’s bioanalytical labs.

• What would the discussion be like if QQQ’s just came along now?
 – “I have to figure out how the compound fragments to analyze it?”
 – “I need a different MS method for every compound?”
 – “I have to know what I am looking for before I run my samples?”
 – “Nominal mass? Really? You must be joking?”
 – “What about all the other things in my samples?”
THIS IS TAKING TOO LONG - WE'LL HAVE TO INDUCE HATCHING.